

EVALUATION OF NEARSHORE WAVE CHARACTERISTICS AND DYNAMICS BY COMBINING REMOTE SENSING TOOLS

Ph.D. Candidate: Muhammed Said Parlak¹

¹Università Politecnica delle Marche, DICEA, Ancona, Italy – <u>m.s.parlak@univpm.it</u> ²Nottingham University, Department of Civil Engineering, Nottingham, UK Tutors: Maurizio Brocchini¹ Nicholas Dodd² Matteo Postacchini¹

Introduction

- Nearshore wave propagation is dominantly nonlinear due to several processes (e.g., shoaling, bottom friction, refraction)
- In-situ measurement devices are not practical in very shallow waters. The maintenance cost is high and observed data is spatially limited.
- Remote sensing tools are alternative to in-situ instruments, and they can collect data from a relatively wide area.
- Video Monitoring (SGS) and X-Band Marine Radar (XBR) are the mostly used remote sensing tools to extract information about the sea state and wave characteristics.
- In this study, SGS and XBR located in our study site is combined to resolve wave characteristics and dynamics *(Fig 1).*

Fig 3: Statistical performance of cBathy and Remocean compared to bathymetric surveys from 2022 and 2023.

Study Site

Results

- Misa River estuary located in Senigallia, Italy [1].
- Accommodates strong interactions between sea and river.
- SGS station consists of 5 cameras, 10 min-long recordings for each hour at 2 fps.
- XBR consists of commercial grade marine X-Band radar. Sampling interval is ~0.5 Hz and 63 scans are collected for each sequence.

Fig 1: The location of the remote sensing tools and the coverage area (red and blue colours indicate XBR and SGS, respectively)

Methodology

 cBathy is designed to evaluate bathymetry by using video recordings of ocean waves [2].

- cBathy is based on dispersion relation, thereby, the evaluated bathymetry is compared to available surveys and alternative radar processing tools (e.g., Remocean [3]) (Fig 3).
- After obtaining reliable bathymetry, wave characteristics are evaluated for the most coherent frequency (*Fig 4*).
- SWAN model is conducted and forced by waves and winds where data is obtained from RON buoy and Copernicus, respectively. Then, the results are validated with MEDA buoy.
- When two models are compared, it is evident that cBathy can resolve wave characteristics fairly good except H_s and θ . The methodology needs to be improved for wave height reconstruction.

- In this study, raw radar signals are treated as an image and timestacks are created with sequential radar scans *(Fig 2).*
- Bathymetry and the wave characteristics corresponding to the most coherent frequency are extracted from cBathy.
- It is assumed that the most coherent frequency is closer to the peak frequency, f_P . Hence, peak celerity, $C_P = 2\pi f_P/k$

Fig 2: Extraction of the domain from the radar coverage, converting raw signals to an image intensity, and input to the cBathy to obtain results

Fig 4: Comparison of wave characteristics obtained from cBathy and SWAN for the date of 3 April 2023, around 19:30. H_s , θ , L_p , T_p and C_p stands for significant wave height, peak wave direction, peak wavelength, peak period and peak celerity, respectively.

